If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+50x-4800=0
a = 1; b = 50; c = -4800;
Δ = b2-4ac
Δ = 502-4·1·(-4800)
Δ = 21700
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{21700}=\sqrt{100*217}=\sqrt{100}*\sqrt{217}=10\sqrt{217}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(50)-10\sqrt{217}}{2*1}=\frac{-50-10\sqrt{217}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(50)+10\sqrt{217}}{2*1}=\frac{-50+10\sqrt{217}}{2} $
| z|8+5=1 | | x³+5x-60=0 | | 4t=18. | | x^2+180x-4800=0 | | 32-4p=-6 | | 2(x+13)(x-√5)=0 | | 3x+8=(5x-7)÷3 | | X2+36x-960=0 | | x+24=480 | | 8-y=16-8 | | 3x^2-8=-11 | | x-1.05x=0 | | 2e÷4=10 | | 4/x^2+8/4x=1/x | | 6/6x+8/x=3 | | 3x=1-x^2 | | 1.2^n+1.2^2n=10^12 | | 1.2^x+1.2^2x=10^12 | | z+12+z=62 | | 72^n=1 | | -0.5x²+1.8x+1.2=0 | | f(7)=f(6)+7 | | 5x-103=3x+2 | | -3n-5=-10 | | y+y*4=30 | | 2x-15+x+25=180 | | 8=−2/5*c | | 34=6t | | 4x+7=4+2x+11 | | 6x^2=12x+31 | | 2/12+x=45 | | x/2-4=2x-11 |